Abstract:From generating headlines to fabricating news, the Large Language Models (LLMs) are typically assessed by their final outputs, under the safety assumption that a refusal response signifies safe reasoning throughout the entire process. Challenging this assumption, our study reveals that during fake news generation, even when a model rejects a harmful request, its Chain-of-Thought (CoT) reasoning may still internally contain and propagate unsafe narratives. To analyze this phenomenon, we introduce a unified safety-analysis framework that systematically deconstructs CoT generation across model layers and evaluates the role of individual attention heads through Jacobian-based spectral metrics. Within this framework, we introduce three interpretable measures: stability, geometry, and energy to quantify how specific attention heads respond or embed deceptive reasoning patterns. Extensive experiments on multiple reasoning-oriented LLMs show that the generation risk rise significantly when the thinking mode is activated, where the critical routing decisions concentrated in only a few contiguous mid-depth layers. By precisely identifying the attention heads responsible for this divergence, our work challenges the assumption that refusal implies safety and provides a new understanding perspective for mitigating latent reasoning risks.
Abstract:High-fidelity generative models have narrowed the perceptual gap between synthetic and real images, posing serious threats to media security. Most existing AI-generated image (AIGI) detectors rely on artifact-based classification and struggle to generalize to evolving generative traces. In contrast, human judgment relies on stable real-world regularities, with deviations from the human cognitive manifold serving as a more generalizable signal of forgery. Motivated by this insight, we reformulate AIGI detection as a Reference-Comparison problem that verifies consistency with the real-image manifold rather than fitting specific forgery cues. We propose MIRROR (Manifold Ideal Reference ReconstructOR), a framework that explicitly encodes reality priors using a learnable discrete memory bank. MIRROR projects an input into a manifold-consistent ideal reference via sparse linear combination, and uses the resulting residuals as robust detection signals. To evaluate whether detectors reach the "superhuman crossover" required to replace human experts, we introduce the Human-AIGI benchmark, featuring a psychophysically curated human-imperceptible subset. Across 14 benchmarks, MIRROR consistently outperforms prior methods, achieving gains of 2.1% on six standard benchmarks and 8.1% on seven in-the-wild benchmarks. On Human-AIGI, MIRROR reaches 89.6% accuracy across 27 generators, surpassing both lay users and visual experts, and further approaching the human perceptual limit as pretrained backbones scale. The code is publicly available at: https://github.com/349793927/MIRROR
Abstract:Prevailing methods for integrating graphs into Language Models (LMs) typically rely on a segregated architecture: external Graph Neural Networks (GNNs) encode structural topology, while LMs process textual semantics. We argue this approach is suboptimal for text-graphs: it creates a conceptually disjointed interaction paradigm. By segregating structural encoding from semantic processing, these systems must perform a complex implicit alignment between abstract graph tokens and concrete textual elements. Challenging the necessity of external encoders, we propose NAG (Native Architecture for Graphs), a unified framework that internalizes graph processing within the LM's native manifold. Instead of bridging disparate embedding spaces, NAG repurposes the self-attention mechanism to enforce topological dependencies and recalibrates positional IDs to ensure structural equivalence. This allows the model to harness its intrinsic linguistic capability to simultaneously comprehend node and edge content alongside structural topology. We introduce two efficient implementations: NAG-Zero for absolute preservation of the base model's linguistic capabilities, and NAG-LoRA for enhanced structural adaptation. Experiments across diverse graph tasks validate that NAG achieves robust graph comprehension without the overhead of external encoders, offering a simpler, more coherent paradigm for text-graph modeling.
Abstract:Prevalent retrieval-based tool-use pipelines struggle with a dual semantic challenge: their retrievers often employ encoders that fail to capture complex semantics, while the Large Language Model (LLM) itself lacks intrinsic tool knowledge from its natural language pretraining. Generative methods offer a powerful alternative by unifying selection and execution, tasking the LLM to directly learn and generate tool identifiers. However, the common practice of mapping each tool to a unique new token introduces substantial limitations: it creates a scalability and generalization crisis, as the vocabulary size explodes and each tool is assigned a semantically isolated token. This approach also creates a semantic bottleneck that hinders the learning of collaborative tool relationships, as the model must infer them from sparse co-occurrences of monolithic tool IDs within a vast library. To address these limitations, we propose ToolWeaver, a novel generative tool learning framework that encodes tools into hierarchical sequences. This approach makes vocabulary expansion logarithmic to the number of tools. Crucially, it enables the model to learn collaborative patterns from the dense co-occurrence of shared codes, rather than the sparse co-occurrence of monolithic tool IDs. We generate these structured codes through a novel tokenization process designed to weave together a tool's intrinsic semantics with its extrinsic co-usage patterns. These structured codes are then integrated into the LLM through a generative alignment stage, where the model is fine-tuned to produce the hierarchical code sequences. Evaluation results with nearly 47,000 tools show that ToolWeaver significantly outperforms state-of-the-art methods, establishing a more scalable, generalizable, and semantically-aware foundation for advanced tool-augmented agents.
Abstract:Composed Image Retrieval (CIR) is a pivotal and complex task in multimodal understanding. Current CIR benchmarks typically feature limited query categories and fail to capture the diverse requirements of real-world scenarios. To bridge this evaluation gap, we leverage image editing to achieve precise control over modification types and content, enabling a pipeline for synthesizing queries across a broad spectrum of categories. Using this pipeline, we construct EDIR, a novel fine-grained CIR benchmark. EDIR encompasses 5,000 high-quality queries structured across five main categories and fifteen subcategories. Our comprehensive evaluation of 13 multimodal embedding models reveals a significant capability gap; even state-of-the-art models (e.g., RzenEmbed and GME) struggle to perform consistently across all subcategories, highlighting the rigorous nature of our benchmark. Through comparative analysis, we further uncover inherent limitations in existing benchmarks, such as modality biases and insufficient categorical coverage. Furthermore, an in-domain training experiment demonstrates the feasibility of our benchmark. This experiment clarifies the task challenges by distinguishing between categories that are solvable with targeted data and those that expose intrinsic limitations of current model architectures.
Abstract:Lifetime value (LTV) prediction is crucial for news feed advertising, enabling platforms to optimize bidding and budget allocation for long-term revenue growth. However, it faces two major challenges: (1) demographic-based targeting creates segment-specific LTV distributions with large value variations across user groups; and (2) dynamic marketing strategies generate irregular behavioral sequences where engagement patterns evolve rapidly. We propose a Hyper-Temporal Graph Neural Network (HT-GNN), which jointly models demographic heterogeneity and temporal dynamics through three key components: (i) a hypergraph-supervised module capturing inter-segment relationships; (ii) a transformer-based temporal encoder with adaptive weighting; and (iii) a task-adaptive mixture-of-experts with dynamic prediction towers for multi-horizon LTV forecasting. Experiments on \textit{Baidu Ads} with 15 million users demonstrate that HT-GNN consistently outperforms state-of-the-art methods across all metrics and prediction horizons.
Abstract:Retrieval-Augmented Generation (RAG) has emerged as a powerful approach for enhancing large language models' question-answering capabilities through the integration of external knowledge. However, when adapting RAG systems to specialized domains, challenges arise from distribution shifts, resulting in suboptimal generalization performance. In this work, we propose TTARAG, a test-time adaptation method that dynamically updates the language model's parameters during inference to improve RAG system performance in specialized domains. Our method introduces a simple yet effective approach where the model learns to predict retrieved content, enabling automatic parameter adjustment to the target domain. Through extensive experiments across six specialized domains, we demonstrate that TTARAG achieves substantial performance improvements over baseline RAG systems. Code available at https://github.com/sunxin000/TTARAG.
Abstract:The rapid progress of generative models has intensified the need for reliable and robust detection under real-world conditions. However, existing detectors often overfit to generator-specific artifacts and remain highly sensitive to real-world degradations. As generative architectures evolve and images undergo multi-round cross-platform sharing and post-processing (chain degradations), these artifact cues become obsolete and harder to detect. To address this, we propose Real-centric Envelope Modeling (REM), a new paradigm that shifts detection from learning generator artifacts to modeling the robust distribution of real images. REM introduces feature-level perturbations in self-reconstruction to generate near-real samples, and employs an envelope estimator with cross-domain consistency to learn a boundary enclosing the real image manifold. We further build RealChain, a comprehensive benchmark covering both open-source and commercial generators with simulated real-world degradation. Across eight benchmark evaluations, REM achieves an average improvement of 7.5% over state-of-the-art methods, and notably maintains exceptional generalization on the severely degraded RealChain benchmark, establishing a solid foundation for synthetic image detection under real-world conditions. The code and the RealChain benchmark will be made publicly available upon acceptance of the paper.
Abstract:Knowledge Base Question Answering (KBQA) challenges models to bridge the gap between natural language and strict knowledge graph schemas by generating executable logical forms. While Large Language Models (LLMs) have advanced this field, current approaches often struggle with a dichotomy of failure: they either generate hallucinated queries without verifying schema existence or exhibit rigid, template-based reasoning that mimics synthesized traces without true comprehension of the environment. To address these limitations, we present \textbf{KBQA-R1}, a framework that shifts the paradigm from text imitation to interaction optimization via Reinforcement Learning. Treating KBQA as a multi-turn decision process, our model learns to navigate the knowledge base using a list of actions, leveraging Group Relative Policy Optimization (GRPO) to refine its strategies based on concrete execution feedback rather than static supervision. Furthermore, we introduce \textbf{Referenced Rejection Sampling (RRS)}, a data synthesis method that resolves cold-start challenges by strictly aligning reasoning traces with ground-truth action sequences. Extensive experiments on WebQSP, GrailQA, and GraphQuestions demonstrate that KBQA-R1 achieves state-of-the-art performance, effectively grounding LLM reasoning in verifiable execution.
Abstract:Recent advancements in large language models, multimodal large language models, and large audio language models (LALMs) have significantly improved their reasoning capabilities through reinforcement learning with rule-based rewards. However, the explicit reasoning process has yet to show significant benefits for audio question answering, and effectively leveraging deep reasoning remains an open challenge, with LALMs still falling short of human-level auditory-language reasoning. To address these limitations, we propose Audio-Thinker, a reinforcement learning framework designed to enhance the reasoning capabilities of LALMs, with a focus on improving adaptability, consistency, and effectiveness. Our approach introduces an adaptive think accuracy reward, enabling the model to adjust its reasoning strategies based on task complexity dynamically. Furthermore, we incorporate an external reward model to evaluate the overall consistency and quality of the reasoning process, complemented by think-based rewards that help the model distinguish between valid and flawed reasoning paths during training. Experimental results demonstrate that our Audio-Thinker model outperforms existing reasoning-oriented LALMs across various benchmark tasks, exhibiting superior reasoning and generalization capabilities.